В. О. Лобовиков*

Алгебра метафизики и цифровая трансформация философской культуры

Аннотация. В статье на конкретных примерах собственно философских высказываний показывается, как можно решать некоторые собственно философские проблемы путем их цифровой трансформации на уровне искусственного языка простейшей дискретной математической модели — двузначной алгебры метафизики.

Ключевые слова: цифровая, философская, культура, алгебра, гармония.

Рассмотрим следующие пять собственно философских высказываний.

- (1) Бытие любого d эквивалентно существованию всеобщей взаимосвязи a и b в материальном мире d.
- (2) Бытие любого d эквивалентно существованию всеобщего взаимодействия a и b в материальном мире d.
- (3) Предустановленная Богом всеобщая взаимная гармония а и b, есть закон метафизики (=философии).
- (4) *Предустановленная* взаимная гармония всего (любых a и b) есть закон Бога.
- (5) Предустановленная взаимная гармония всего на свете (любых a и b), есть закон метафизики бытия (философской онтологии).

Для обеспечения адекватного понимания необходимо точно определить специальные значения основных терминов. Поэтому, прежде всего, договоримся, что слова «метафизика» и «филосо-

^{*} Владимир Олегович Лобовиков, д-р филос. наук, профессор, главный научный сотрудник Института философии и права Уральского отделения Российской академии наук (Екатеринбург, Россия). ORCID: 0000-0001-8760-0452.

[©] Лобовиков В. О., 2023

фия» будут использоваться как синонимы. В основании представленной концепции лежит нетривиальная презумпция (гипотеза), согласно которой, в сущности, метафизика (=философия) есть формальная аксиология. Если к понимаемой таким образом метафизике приложить некую подходящую для этого алгебру, то в результате такого приложения математики к философии можно получить некую алгебру метафизики. (Слово «алгебра» используется здесь в собственно математическом значении.)

Двузначная алгебраическая система метафизики как формальной аксиологии есть тройка <Ф, O, R>, в которой символ Ф обозначает бесконечное множество всех таких элементов (существующих или несуществующих, - неважно), которые являются либо хорошими, либо плохими, с точки зрения некоего оценщика (субъекта оценивания) Σ (индивидуального или коллективного, естественного или искусственного, — неважно). Очевидно, что Σ переменная: изменение ее значений может приводить к изменению оценок конкретных элементов множества Ф. Однако если значение переменной Σ определено (зафиксировано), то оценки конкретных элементов множества Ф оказываются вполне определенными. Элементы множества Ф будем называть формально-аксиологическими объектами метафизики независимо от их бытия или небытия. Символы «х (хорошо)» и «п (плохо)» обозначают абстрактные аксиологические значения элементов множества Ф. Моральные поступки или субъекты (индивидуальные или коллективные, - неважно) суть конкретные примеры (частные случаи) элементов Ф.

В тройке <Ф, O, R> символ О обозначает множество всех *п-арных алгебраических операций*, определенных на множестве Ф. (Элементы множества О называются формально-аксиологическими операциями алгебры метафизики.) В упомянутой тройке символ R обозначает множество всех *п-местных формально-аксиологических отношений*, определенных на множестве Ф. (Например, определенное ниже бинарное отношение «формально-аксиологическая эквивалентность» принадлежит R.) Алгебраические операции, определенные на множестве Ф, суть *ценностные функции*. Их *ценностные переменные* принимают значения из двух-

элементного множества $\{x\ (xорошо),\ \Pi\ (плохо)\}$. Здесь символы xx и xy и xy обозначают ценностные значения xy и xy обозначают ценностные функции принимают значения из того же самого двухэлементного множества. При рассуждениях о ценностных функциях имеются в виду следующие отображения: $\{x,\ n\} \to \{x,\ n\}$, если разговор идет о функциях, детерминируемых одним ценностным аргументом; $\{x,\ n\} \times \{x,\ n\} \to \{x,\ n\}$, если разговор идет о функциях, детерминируемых одним ценностными аргументами (здесь "xy" обозначает Декартово произведение множеств); $\{x,\ n\}^N \to \{x,\ n\}$, если разговор идет о функциях, детерминируемых xy и ценностными аргументами (здесь xyy) обозначает некое конечное положительное целое число).

Для получения основного результата данной работы необходимо точно определить те элементарные ценностные функции, которые являются формально-аксиологическими значениями слов, использованных при формулировании пяти упомянутых выше философских сентенций (1)-(5). Определять эти элементарные ценностные функции будем табличным способом. Начнем с ценностных функций от $o\partial ho\ddot{u}$ ценностной переменной.

Глоссарий для следующей ниже **таблицы 1**. Символ Ba обозначает ценностную функцию «бытие, жизнь (чего, кого) a». Na — «небытие, смерть (чего, кого) a». Символ Ha обозначает ценностную функцию «изменение, движение (чего, кого) a». Ma — «материя, материальность (чего, кого) a». Ta — «внутренняя противоречивость (чего, кого) a». Ta — «самоуничтожение (чего, кого) a». Ta — «самоуничтожение (чего, кого) a». Ta — «самоуничтожение (чего, кого) a». Ta — «быт (чего, кого, чей) a». Ta — «закон (чего, кого, чей) a». Ta — «закон (чего, кого, чей) a». Ta — «предустановленная, предопределенная, заранее урегулированная, запрограммированная (что, кто) a». Перечисленные ценностные функции от одной переменной точно определяются ниже табл. a

Таблица 1 Ценностные функции от одной ценностной переменой

	а	Ва	Na	Иа	Ма	Па	Za	Sa	Ta	Pa	Ga	За	Wa	Ша	Da
Ī	X	X	П	П	П	П	П	П	П	X	X	X	X	П	П
	П	П	X	X	X	X	П	П	П	X	X	П	П	X	X

Глоссарий для представленной ниже ценностной таблицы 2. Символ L^2ab обозначает ценностную функцию «связь, связанность (чего, кого) а с (чем, кем) b». (Верхний числовой индекс 2, расположенный непосредственно справа от заглавной буквы, указывает на то, что эта буква обозначает ценностную функцию от двух ценностных переменных.) Символ К²ав обозначает ценностную функцию «объединение (чего, кого) a и b, т. е. их бытие вместе». C^2ab — «существование (чего, кого) b в (чем, ком) a», т. е. «бытие b внутри a». \mathcal{A}^2ab — «действие (чего, кого) b на (что, кого) a». S^2ab — «противоречие, противоположность (чего, кого) b (чему, кому) a». T^2ab — «уничтожение (чего, кого) a (чем, кем) b». P^2ab — «сохранение, защита (чего, кого) a (чем, кем) b». U^2ab — «изменение, движение (чего, кого) a (чем, кем) b». UI^2ab — «превращение, трансформация (чего, кого) a во (что, кого) b». $\Gamma^2 ab$ — «гармония, согласие, согласованность (чего, кого) a с (чем, кем) b». $\Pi^2 ab$ — «предустановленная, предопределенная (что, кто) a (чем, кем) b». Эти функции определяются ниже табл. 2.

Таблица 2 **Ценностные функции от двух переменных**

a	b	L^2ab	K²ab	C^2 ab	Д²ab	S^2ab	T^2ab	P^2ab	И²ab	Щ²аb	Γ^2ab	Π^2ab
X	X	П	X	X	П	П	П	X	П	П	П	П
X	П	П	П	П	П	П	П	X	П	П	П	П
П	X	X	П	X	X	X	X	П	X	X	X	X
П	П	П	П	X	П	П	П	X	П	П	П	П

Понятия «формально-аксиологическая эквивалентность (ценностных функций)», «закон метафизики» и «формально-аксиологическое противоречие» определяются так:

ОПРЕДЕЛЕНИЕ (DF-1) отношения формально-аксиологической эквивалентности: ценностные функции Ω и Δ называются формально-аксиологически эквивалентными, если и только если они (Ω и Δ) принимают одинаковые ценностные значения из множества $\{x\ (xорошо);\ \Pi\ (плохо)\}$ при любой возможной комбинации ценностных значений (x или x) переменных. Отношение формально-аксиологической эквивалентности ценностных функций x и x обозначается символом «x = +=x выражается словами «есть», «является», «значит», иногда заменяемыми тире. На стыке формальной логики и формальной аксиологии это чревато недоразумениями, поэтому, используя естественный язык, нужно точно фиксировать значения упомянутых омонимов.

ОПРЕДЕЛЕНИЕ DF-2: законом двузначной алгебры метафизики (как формальной аксиологии) является любая такая, и только такая, ценностная функция, которая принимает значение «хорошо» при любой возможной комбинации ценностных значений своих переменных. Иначе говоря, закон метафизики (=формальной аксиологии) есть ценностная функция-констания, принимающая значение «хорошо». Если Ω есть некая ценностная функция, то она есть закон метафизики (=формальной аксиологии), если и только если Ω =+=x.

ОПРЕДЕЛЕНИЕ DF-3: формально-аксиологическим противоречием в двузначной алгебре метафизики как формальной аксиологии является любая такая, и только такая, ценностная функция, которая принимает значение «плохо» при любой возможной комбинации ценностных значений своих переменных. Иначе говоря, формально-аксиологическое противоречие есть ценностная функция-констания, принимающая значение «плохо». Если Ω есть некая ценностная функция, то она есть формально-аксиологическое противоречие, если и только если Ω =+=п.

Теперь все точные дефиниции, необходимые для получения обещанного выше основного результата настоящей работы, даны. Поэтому можно приступить к построению (и к самостоятельной проверке!) следующих пяти «уравнений» обсуждаемой алгебраческой системы метафизики. Справа от каждого из этих урав-

нений помещен его перевод с искусственного языка математической модели на естественный человеческий язык.

- (1*) $Bd=+=C^2MWdK^2L^2abL^2ba$: бытие любого d эквивалентно существованию всеобщей взаимосвязи a и b в материальном мире d.
- (2^*) $Bd = += C^2MWdK^2\mathcal{A}^2ab\mathcal{A}^2ba$: бытие любого d эквивалентно существованию всеобщего взаимодействия a и b в материальном мире d.
- (3*) $\Pi^2 K^2 \Gamma^2 ab \Gamma^2 ba Gd = += x$: предустановленная Богом (чего, кого) d всеобщая взаимная гармония a и b есть (универсальный) закон метафизики бытия (философской онтологии).
- $(4*) DK^2\Gamma^2ab\Gamma^2ba=+=3Gd$: предустановленная взаимная гармония всего закон Бога.
- $(5*) DK^2\Gamma^2ab\Gamma^2ba = += x$: предустановленная взаимная гармония всего на свете (любых a и b) есть закон метафизики бытия (философской онтологии).

Каждый читатель этого текста приглашается к самостоятельной перепроверке всех представленных выше уравнений на предмет их соответствия вышеприведенным дефинициям.

Литература

- 1. Лобовиков В. О. Диалектический материализм как логически непротиворечивая дедуктивная теория // Известия Уральского федерального университета. Серия 3 : Общественные науки. -2018. Т. 13, № 1 (173). С. 37–50.
- 2. Лобовиков В. О. «Математическая» теология Спинозы: о бытии бога во всякой вещи, в любом месте, в любое время, а также о боге как имманентной причине всего (пространство и время как атрибуты вездесущего бога: двузначная алгебра метафизики как дискретная математическая модель формально-аксиологического аспекта трансцендентной и имманентной причинности) // Пространство и время. 2017. 1000 100
- 3. Лобовиков В. О. Принцип композициональности в формально-аксиологической семантике естественного языка. Ценностные функции от конечного числа ценностных переменных в двузначной алгебраической системе формальной аксиологии как денотаты слов и сложных словосочетаний естественного языка культуры // Известия Уральского федерального университета. Серия 3 : Общественные науки. 2015. \mathbb{N} 2 (140). С. 84—97.