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МОДЕЛИ ДЛЯ ФОРМАЛЬНОЙ 
АКСИОМАТИЧЕСКОЙ ТЕОРИИ ЗНАНИЯ Ξ

Аннотация

Определяется формальная аксиоматическая теория Ξ, представляющая собой фило-
софскую эпистемологию, и исследуется проблема ее логической непротиворечивости. 
Впервые выносятся на обсуждение такие качественно различные интерпретации 
аксиоматической системы Ξ, которые являются моделями для Ξ. С помощью этих 
моделей доказывается, что обсуждаемая формальная теория знания логически не-
противоречива.
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1. Introduction

A definition of the theory Ξ may be found in [15, 19–21]. During the oral 
presentation and discussion of Ξ at the World Congress on Universal Logic 
in Vichy, France, 2018, the logic consistency of Ξ was questioned. Moreover, some 
colleagues expressed the hypothesis that Ξ is inconsistent. Therefore, as in relation 
to philosophical epistemology, Ξ is a nontrivial novelty worthy of further development 
and systematical investigation, I have studied the consistency problem and submit 
results of the study below in this paper.

2. Definition of Ξ

For constructing a rigorous proof of logic consistency of the formal axiomatic 
epistemology theory Ξ it is indispensable to have a precise definition of that theory. 
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Therefore, the present paragraph 2 of this paper is aimed at making the reader 
acquainted with the rigorous formulation of Ξ which can be found, for instance, 
in [19–21]. According to the definition given in these papers, the logically formalized 
axiomatic epistemology system Ξ contains all symbols, expressions, formulae, axioms, 
and inference-rules of the classical propositional logic. Symbols q, p, d, … (called 
propositional letters) are elementary formulae of Ξ. Symbols α, β, ω, π, … (belonging 
to meta-language) stand for any formulae of Ξ. In general, the notion “formulae of Ξ” 
is defined as follows.

1) All propositional letters q, p, d, … are formulae of Ξ.
2) If α and β are formulae of Ξ, then all such expressions of the object-language 

of Ξ, which possess logic forms ¬α, (α → β), (α ↔ β), (α & β), (α ˅  β), are 
formulae of Ξ as well.

3) If α is a formula of Ξ, then Ψα is a formula of Ξ as well.
4) Successions of symbols (belonging to the alphabet of the object-language 

of Ξ) are formulae of Ξ, only if this is so owing to the above-given 
items (1) – (3) of the present definition.

The symbol Ψ belonging to meta-language stands for any element of the set 
of modalities {□, K, A, E, S, T, F, P, Z, G, O, B, U, Y}. Symbol □ stands for the alethic 
modality “necessary”. Symbols K, A, E, S, T, F, P, Z, respectively, stand for modalities 

“agent knows that…”, “agent a-priori knows that…”, “agent a-posteriori knows that…”, 
“under some conditions in some space-and-time a person (immediately or by means 
of some tools) sensually perceives (has sensual verification) that…”, “it is true that…”, 

“agent believes that…”, “it is provable that…”, “there is an algorithm (a machine 
could be constructed) for deciding that…”.

Symbols G, O, B, U, Y, respectively, stand for modalities “it is (morally) 
good that…”, “it is obligatory that…”, “it is beautiful that…”, “it is useful that…”, 

“it is pleasant that…”. Meanings of the mentioned symbols are defined by the following 
schemes of own-axioms of epistemology system Ξ which axioms are added 
to the axioms of classical propositional logic. Schemes of axioms and inference rules 
of the classical propositional logic are applicable to all formulae of Ξ (including 
the additional ones).

Axiom scheme AX-1: Aα → (□β → β).
Axiom scheme AX-2: Aα → (□(α → β) → (□α → □β)).
Axiom scheme AX-3: Aα ↔ (Kα & (□α & □¬Sα & □(β ↔ Ωβ))).
Axiom scheme AX-4: Eα ↔ (Kα & (¬□α ˅ ¬□¬Sα ˅ ¬□(β ↔ Ωβ))).
In AX-3 and AX-4, the symbol Ω (belonging to the meta-language) stands 

for any element of the set ℜ = {□, K, T, F, P, Z, G, O, B, U, Y}. Let elements of ℜ 
be called “perfection-modalities” or simply “perfections”.

3. Models of/for Ξ

Above the axioms of Ξ were defined by the axiom-schemes. Now first of all 
it is relevant to depart from the meta-language to the object-language, i. e. to move 
from the above axiom-schemes to the following axioms, respectively.

Axiom AX-1*: Aq → (□p → p).
Axiom AX-2*: Aq → (□(q → p) → (□q → □p)).
Axiom AX-3*: Aq ↔ (Kq & (□q & □¬Sq & □(p ↔ □p))).
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Axiom AX-4*: Eq ↔ (Kq & (¬□q ˅ ¬□¬Sq ˅ ¬□ (p ↔ □p))).
These axioms are obtained from the corresponding axiom-schemes 

by substituting: propositional letter q for α; propositional letter p for β; □ for Ω. In this 
paper such interpretations of/for Ξ are considered in which all the axioms of Ξ are true. 
Now everything is prepared for defining and discussing interpretation-functions to be 
used for the demonstration of consistency.

Let ⊕ stand for an element of the set of classical binary connectives {→, ↔, &, 
˅}. Let @ stand for an element of the set of below-considered interpretation-functions 
{¥, ∇,€, £}. It is a common aspect of the below-given definitions of the interpretation-
functions under consideration in this paper that, for any @, ⊕, ω, and π, it is true that:

1) @¬ω = ¬@ω;
2) @ (ω ⊕ π) = (@ω ⊕ @π).
Now let us move to specific aspects of the interpretation-function-definitions 

under review in this paper.

3.1. Interpretation ¥

3) ¥q = true.
4) ¥p = true.
5) ¥Aq = true.
6) ¥Kq = true.
7) ¥Eq = false.
8) ¥Sq = false.
9) For any ω, ¥□ω = true: everything is necessary; this is an expression of such 

an extremely rationalistic a-priori-ism philosophy which can be extracted from writings 
of Spinoza [28] and Leibniz [11–14].

In the interpretation ¥, all the axioms of Ξ are true, consequently, Ξ has a model, 
hence Ξ is consistent.

3.2. Interpretation ∇

3) ∇q = true.
4) ∇p = true.
5) ∇Aq = false.
6) ∇Kq = true.
7) ∇Eq = true.
8) ∇Sq = true.
9) For any ω, ∇□ω = false: nothing is necessary; this is an expression of such 

an extreme sensualism-and-empiricism philosophy which can be extracted from 
writings of Locke [22], Hume [7, 8], Berkeley [5], Mach [23, 24], Popper [26, 27], 
and Wittgenstein [29].

In the interpretation∇ all the axioms of Ξ are true, consequently, Ξ has a model, 
hence Ξ is consistent.

3.3. Interpretation €

3) €q = true.
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4) €p = true.
5) €Aq = €q.
6) €Kq = €q.
7) €Eq = €¬q.
8) €Sq = €¬q.
9) For any ω, €□ω = €ω.
In the interpretation €, all the axioms of Ξ are true, consequently, Ξ has a model, 

hence Ξ is consistent.

3.4. Interpretation £

3) £q = true.
4) £p = true.
5) £Aq = £¬q.
6) £Kq = £q.
7) £Eq = £q.
8) £Sq = £q.
9) For any ω, £□ω = £¬ω.
In the interpretation £, all the axioms of Ξ are true, consequently, Ξ has a model, 

hence Ξ is consistent.

4. Formal proofs of philosophically interesting theorems in Ξ

Strictly speaking, here I mean not proofs of theorems but schemes of proofs 
of schemes of theorems. They are the following.

4.1. Theorem-scheme (Aα → (Oα ↔ Gα))

Its formal proof (or, strictly speaking, scheme of proofs) in Ξ is the following 
succession of formulae-schemes.

1) Aα ↔ (Kα & (□α & □¬Sα & □(β ↔ Ωβ)): axiom scheme AX-3.
2) Aα: assumption.
3) Kα & □α & ¬□¬Sα & □(β ↔ Ωβ): from 1 and 2 by propositional logic.
4) □(β ↔ Ωβ): from 3 by the rule of &-elimination.
5) (β ↔ Ωβ): from 4 by the (limited) rule of □-elimination.
6) (β ↔ Gβ): from 5 by substituting G for Ω.
7) (β ↔ Oβ): from 5 by substituting O for Ω.
8) (Oβ ↔ β): from 7 by commutativity of ↔.
9) (Oβ ↔ Gβ): from 8 and 6 by transitivity of ↔.
10) Аα │– (Oβ ↔ Gβ): by 1–9.
11) Аα │– (Oα ↔ Gα): from 10 by substituting α for β.
12) │– (Aα → (Oα ↔ Gα)): from 11 by the rule of introduction of →.
Here you are.

4.2. Theorem-scheme (Aα → (Oα ↔ □α))

Its formal-proof-scheme is the following succession.
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1) Aα ↔ (Kα & (□α & □¬Sα & □(β ↔ Ωβ)): axiom scheme AX-3.
2) Aα: assumption.
3) Kα & □α & ¬□¬Sα & □(β ↔ Ωβ): from 1 and 2 by propositional logic.
4) □(β ↔ Ωβ): from 3 by the rule of &-elimination.
5) (β ↔ Ωβ): from 4 by the (limited) rule of □-elimination.
6) (β ↔ □β): from 5 by substituting □ for Ω.
7) (β ↔ Oβ): from 5 by substituting O for Ω.
8) (Oβ ↔ β): from 7 by commutativity of ↔.
9) (Oβ ↔ □β): from 8 and 6 by transitivity of ↔.
10) Аα │─ (Oβ ↔ □β): by 1–9.
11) Аα │─ (Oα ↔ □α): from 10 by substituting α for β.
12) │─ (Aα → (Oα ↔ □α)): from 11 by the rule of introduction of →.
Here you are.
Obviously, the above-given schemes of proofs are analogous; they are 

generalized by the following scheme of proofs of scheme of theorems in Ξ.

4.3. Theorem-scheme (Аα → (Σα ↔ Ωα))

For any Σ and Ω, it is provable in Ξ that (Аα → (Σα ↔ Ωα)), where the 
symbols Σ and Ω (belonging to the meta-language) stand for any elements of the 
set ℜ = {□, K, T, F, P, Z, G, O, B, U, Y}. (Elements of ℜ are called perfection-
modalities.) The following succession of schemes of formulae is a scheme of proofs 
of/for (Аα → (Σα ↔ Ωα)) in Ξ.

1) Aα ↔ (Kα & (□α & □¬Sα & □(β ↔ Ωβ))): axiom scheme AX-3.
2) Aα → (Kα & (□α & □¬Sα & □(β ↔ Ωβ)): from 1 by the rule of elimination 

of ↔.
3) Aα: assumption.
4) (Kα & (□α & □¬Sα & □(β ↔ Ωβ)): from 2 and 3 by modus ponens.
5) □(β ↔ Ωβ): from 4 by the rule of elimination of &.
6) (β ↔ Ωβ): from 5 by the rule of elimination of □.
7) (α ↔ Σα): from 6 by substituting (α for β, and Σ for Ω).
8) (α ↔ Ωα): from 6 by substituting (α for β).
9) (Σα ↔ α): from 7 by commutativity of ↔.
10) (Σα ↔ Ωα): from 9 and 8 by transitivity of ↔.
11) Аα │─ (Σα ↔ Ωα): by 1–10.
12) │─ Aα → (Σα ↔ Ωα): from 11 by the rule of introduction of →.
From the viewpoint of purely mathematical technique, the proof of (Аα → (Σα ↔ 

Ωα)) is not interesting (too simple). But from the viewpoint of proper philosophy 
contents, the statement (Аα → (Σα ↔ Ωα)) is very interesting and important. Various 
concrete philosophical interpretations (particular cases) of that statement are well-
known as fundamental philosophical principles of the rationalism (a-priori-ism). 
For example, the following specific philosophical interpretations of the theorem-
scheme (Aα → (Σα ↔ Ωα)) are worth mentioning.

a) Аα → (Gα ↔ Tα): the rationalistic principle of optimism in ethics 
by N. Malebranche and G. W. Leibniz.
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b) Аα → (Tα ↔ Pα): the rationalistic principle of optimism in epistemology 
by G. W. Leibniz and D. Hilbert. About modeling this principle see [15; 16; 
19].

c) Аα → (Pα ↔ Zα): the rationalistic principle of mechanistic (algorithmic) 
optimism in epistemology by R. Llull (Lullus), G.  W. Leibniz, 
and A. A. Lovelace (Augusta Ada King-Noel, Countess of Lovelace).

d) Аα → (□α ↔ Gα): the rationalistic principle of equivalence between 
necessary being and (universal) goodness. This principle was expressed 
by some outstanding creators of Ancient-Roman-Law, for example, Ulpian, 
and some great theologians, for example, St. Tomas Aquinas [1; 2].

e) Аp → (Gp ↔ Bp): the principle of kalokagathia (Socrates, Xenophon, Plato, 
Aristotle [2; 3]);

f) Аp → (Gp ↔ Up): the principle of utilitarianism ethics (J. Bentham, 
J.-St. Mill [25]).About modeling this principle in Ξ, see [17; 19].

g) Аp → (Gp ↔ Yp): the principle of hedonism ethics (Aristippus, Epicurus). 
Modeling this principle in Ξ is discussed in [17; 19].

h) Аp → (Bp ↔ Yp): the principle of hedonism in aesthetics;
i) Аp → (Bp ↔ Up): the principle of beauty of useful (and usefulness of beauty).
j) Аp → (Tp ↔ Up): the principle of pragmatism in theory of truth (J. Dewey [6], 

W. James [9; 10], C. S. Peirce).
k) Аp → (Tp ↔ Bp): the principle of beauty as criterion of truth. (W. Blake, 

P. A. M. Dirac).
l) Аp → (Pp ↔ Bp): the principle of beauty as criterion of proof (S. S. Averincev).

4.4. Theorem-scheme (Аα → (□α ↔ □Ωα))

In addition to the above-said it is worth mentioning that the following succession 
of formula-schemes is a scheme of proofs (in Ξ) of the philosophically interesting 
theorem-scheme (Aα → (□α ↔ □Ωα)), where Ω takes values from the set ℜ.

1) Aα ↔ (Kα & (□α & □¬Sα & □(β ↔ Ωβ)): axiom scheme AX-3.
2) Aα: assumption.
3) Kα & □α & ¬□¬Sα & □(β ↔ Ωβ): from 1 and 2 by propositional logic.
4) □(β ↔ Ωβ): from 3 by the rule of &-elimination.
5) □(α ↔ Ωα): from 4 by substituting α for β.
6) Aα → (□(α ↔ β) → (□α ↔ □β)): theorem scheme.
7) Aα → (□(α ↔ Ωα) → (□α ↔ □Ωα)): from 6 by substituting Ω α for β.
8) □(α ↔ Ωα) → (□α ↔ □Ωα): from 7 and 2 by modus ponens.
9) (□α ↔ □Ωα): from 8 and 5 by modus ponens.
10) │─ (Aα → (□α ↔ □Ωα)): by the rule of introduction of →.
Here you are.
The theorem-scheme (Aα → (□α ↔ □Ωα)) may be instantiated by the following 

nontrivial philosophical principles.
a) Аα → (□α ↔ □Gα): the natural-law principle of equivalence of necessary 

being and necessary positive-moral-value (necessary goodness), represented 
in works of Aristotle, Ulpian, and Aquinas. About this see [18; 19].
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b) Аp → (□p ↔ □Op): the natural-law principle of equivalence of necessary 
being and necessary norm (duty), represented in works of Cicero, I. Kant, 
and H. Kelsen. Of this principle see [18; 19].

From a) and b) it follows logically that Аp → (□Op ↔ □Gα): the principle 
of equivalence of the normative (deontic) and the evaluative options of formulating 
the natural-law doctrine [18; 19].

Gödel’s necessitation rule does not belong to the set of inference rules of Ξ. 
Nevertheless, it is easy to demonstrate in Ξ that under the condition that Aα (but 
not in general), the following (limited) inference-rule of necessitation is valid: 

“If Аα │─ β, then Аα │─ □β”. The following inference is a demonstration of this rule.
1. Aα ↔ (Kα & (□α & □¬Sα & □(β ↔ Ωβ)): axiom scheme AX-3.
2. Aα: assumption.
3. Kα & □α & ¬□¬Sα & □ (β ↔ Ωβ): from 1 and 2 by propositional logic.
4. □(β ↔ Ωβ): from 3 by the rule of &-elimination.
5. (β ↔ Ωβ): from 4 by the (limited) rule of □-elimination.
6. Аα │─ (β ↔ Ωβ): by 1–5.
7. Аα │─ (β ↔ □β): from 6 by substituting □ for Ω.
8. Аα │─ β: is given.
9. Аα │─ □β: from 7 and 8 by propositional logic.
10. If Аα │─ β then Аα │─ □β: by 1–9.

5. Conclusion

As there is at least one interpretation in which all axioms of Ξ are true (i. e. 
a model of/for Ξ exists), Ξ is consistent. Moreover, as all axioms of Ξ are true 
in both “absolutely opposite” interpretations, namely, the rationalism-a-priori-ism 
and the sensualism-empiricism ones, the two “opposites” are synthesized by Ξ without 
a logic contradiction.
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